A q-Analog of Foulkes' Conjecture
نویسنده
چکیده
We propose a q-analog of classical plethystic conjectures due to Foulkes. In our conjectures, a divided difference of plethysms of Hall-Littlewood polynomials Hn(x; q) replaces the analogous difference of plethysms of complete homogeneous symmetric functions hn(x) in Foulkes’ conjecture. At q = 0, we get back the original statement of Foulkes, and we show that our version holds at q = 1. We discuss further supporting evidence, as well as various generalizations, including a (q, t)-version.
منابع مشابه
On Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملPartial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملSome Plethystic Identities And Kostka-Foulkes Polynomials
plays an important role in the Garsia-Haglund proof of the q, t-Catalan conjecture, [2]. Let ΛQ(q,t) be the space of symmetric functions of degree n, over the field of rational functions Q(q, t), and let ∇ : ΛQ(q,t) → Λ n Q(q,t) be the Garsia-Bergeron operator. By studying recursions, Garsia and Haglund show that the coefficient of the elementary symmetric function en(X) in the image ∇(En,k(X))...
متن کاملSome Plethystic Identites and Kostka-foulkes Polynomials
plays an important role in the Garsia-Haglund proof of the q, t-Catalan conjecture, [2]. Let ΛQ(q,t) be the space of symmetric functions of degree n, over the field of rational functions Q(q, t), and let ∇ : ΛQ(q,t) → ΛQ(q,t) be the Garsia-Bergeron operator. By studying recursions, Garsia and Haglund show that the coefficient of the elementary symmetric function en(X) in the image∇(En,k(X)) of ...
متن کاملUbiquity of Kostka Polynomials
We report about results revolving around Kostka–Foulkes and parabolic Kostka polynomials and their connections with Representation Theory and Combinatorics. It appears that the set of all parabolic Kostka polynomials forms a semigroup, which we call Liskova semigroup. We show that polynomials frequently appearing in Representation Theory and Combinatorics belong to the Liskova semigroup. Among ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 24 شماره
صفحات -
تاریخ انتشار 2017